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It is shown that, in general, a connection exists between orthogonal polynomials and semibounded random
walks. This connection allows one to view a random walk as taking place on the set of integers that index the
orthogonal polynomials. An illustration is provided by the case of spherically symmetric random walks. The
correspondence between orthogonal polynomials and random walks enables one to express random-walk
probabilities as weighted inner products of the polynomials. This correspondence is exploited to construct and
analyze spherically symmetric random walks inD-dimensional space, whereD is not restricted to be an
integer. Such random walks can be described in terms of Gegenbauer~ultraspherical! polynomials. For ex-
ample, Legendre polynomials can be used to represent the special case of two-dimensional spherically sym-
metric random walks. The weighted inner-product representation is used to calculate exact closed-form spatial
and temporal moments of the probability distribution associated with the random walk. The polynomial
representation of spherically symmetric random walks is then used to calculate the two-point Green’s function
for a rotationally symmetric free scalar quantum field theory.@S1063-651X~96!05606-1#

PACS number~s!: 05.40.1j, 04.60.Nc, 02.90.1p

I. INTRODUCTION

Random walks onD-dimensional hypercubic lattices
have been studied in great detail; see, for example@1,2#, and
the references therein. In two recent papers@3,4# we pro-
posed and analyzed another kind ofD-dimensional random
walk that is well defined even whenD is noninteger. This
random walk takes place on a spherical lattice consisting of
an infinite set of concentric nested spheres of radiiRn ,
n51,2,3,... . We define region n to be the volume lying
betweenRn21 and Rn , with the central region, region 1,
being the volume insideR1 . If the random walker occupies
regionn at timet, then at timet11 the random walker must
move out to regionn11 with probability Pout(n) or in to
region n21 with probability Pin(n). The probabilities of
moving out and in are in proportion to the hyperspherical
surface areas bounding regionn. Let SD(R) represent the
surface area of aD-dimensional hypersphere

SD~R!5
2pD/2

G~D/2!
RD21.

We then take~for n.1!

Pout~n!5
SD~Rn!

SD~Rn!1SD~Rn21!
5

Rn
D21

Rn
D211Rn21

D21 ~1.1!

and

Pin~n!5
SD~Rn21!

SD~Rn!1SD~Rn21!
5

Rn21
D21

Rn
D211Rn21

D21 . ~1.2!

For the special casen51 we define

Pout~1!51, Pin~1!50. ~1.3!

Note that probability is conserved because the total probabil-
ity of the random walker moving out or in isunity:

Pout~n!1Pin~n!51. ~1.4!

To describe a random walk on this lattice we introduce
the notationCn,t;m , which represents the probability that a
random walker, initially in regionm at time t50, will be
found in regionn at time t. The probabilityCn,t;m satisfies
the partial difference equation

Cn,t;m5Pin~n11!Cn11,t21;m1Pout~n21!Cn21,t21;m

~n>2!, ~1.5!

C1,t;m5Pin~2!C2,t21;m , ~1.6!

and the initial condition

Cn,0;m5dn,m . ~1.7!

The random walk described above has the advantage that
the quantityCn,t;m is a meaningful probability forall real
values of the spatial dimensionD; that is, for all timest, the
inequality

0<Cn,t;m<1

holds. This result is in stark contrast with the random walk as
it is conventionally defined on a hypercubic lattice@5#. For
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example, on aD-dimensional hypercubic lattice, the prob-
ability that a random walker who is initially at the origin0
will again be found at the origin att52 is

C0,2;05
1

2D
,

which is greater than unity forD, 1
2 ; the probability that a

random walker who is initially at the origin0 will again be
found at the origin att54 is

C0,4;05
6D23

8D3 ,

which is negative forD, 1
2 .

In this paper we present an array of results concerning
D-dimensional random walks. Specifically, we consider ran-
dom walks that are defined by the partial difference equa-
tions ~1.5!–~1.7!. We show in Sec. II that there is a natural
one-to-one correspondence between the probabilitiesCn,t;m
that describe a random walk on a lattice consisting of regions
n, n51,2,3,..., and a set oforthogonal polynomials
$Qn21(x)%, n51,2,3,... .This set of polynomials is uniquely
determined by the functionsPin(n) and Pout(n) in Eqs.
~1.5!–~1.7!. There is a simple expression forCn,t;m in terms
of these polynomials. In general, one can view a random
walk on the regionsn as a random sequence of raising and
lowering operators applied to the set of polynomials
$Qn21(x)%. ~Although not discussed in this paper, this cor-
respondence between polynomials and random walks ex-
tends to multidimensional random walks and multi-index
systems of orthonormal functions.!

If we take evenly spaced concentric spheres (Rn5n), we
find that for the special casesD50,1,2, the polynomials
$Qn21(x)% associated withPin(n) andPout(n) in Eqs.~1.1!–
~1.3! are standard@6,7# classical polynomials: Gegenbauer
polynomials forD50, Chebyshev polynomials forD51,
and Legendre polynomials forD52. However, for all other
values ofD the polynomials have not been previously stud-
ied and are not found in any of the usual treatments of or-
thogonal polynomials. While we can generate these polyno-
mials, we have not been able to determine their general
mathematical properties, such as their weight function and
interval of orthogonality.

In Sec. III we modify the form ofPin(n) andPout(n) in
Eqs. ~1.1!–~1.3! by replacing these functions with their
large-n asymptotic behaviors. The polynomials that we now
obtain are well-known classical polynomials~ultraspherical
polynomials! for all D . This allows us to find closed-form
expressions for the probabilitiesCn,t;m for all values ofD.

Taking the probabilities in Sec. III, we then calculate in
Sec. IV extraordinarily simple, closed-form, analytic expres-
sions for the probability of a random walker eventually re-
turning to the region from which the walker started, the ex-
pected time for the walker to return to the initial region, and
other space and time moments of the probability distribution
Cn,t;m . ~In contrast, in Ref.@4#, after heavy analysis we were
only able to obtain asymptotic approximations for these mo-
ments.! We also find that for integerD these moments ex-
hibit the qualitative features~e.g., Polya’s theorem! of ran-
dom walks onD-dimensional hypercubic lattices.

Our long-range objective in studyingD-dimensional ran-
dom walks is to understand critical behavior in quantum field
theory. We would like to understand, for example, the tran-
sition that occurs when a self-interacting scalarf4 quantum
field theory in space-time dimensionD,4 becomes a free
quantum field theory forD.4. One possible approach to
such a problem would be to formulate a quantum field theory
in terms of random walks@5,8#. However, if we do so on a
hypercubic lattice, it is not possible to study these random
walks except for integer values ofD, as we have discussed
above. As a result, we cannot use a hypercubic lattice to
examine the behavior of a quantum field theory nearD54.
Thus we are motivated to investigate alternative kinds of
random walks that may be consistently defined forall real
D. Critical behavior has already been observed in a two-
dimensional spherically symmetric random-walk model@9#.
In the next two papers in this series@10,11# we study this
critical behavior as a continuous function ofD for all D.0
in the context of birth and death models. We also show that
polymers adhering toD-dimensional curved surfaces exhibit
universal critical behavior.

Of course, a quantum field theory that is developed from
a spherically symmetric random walk will itself be spheri-
cally symmetric. Such a theory is physically unacceptable
because it violates causality. Nevertheless, the critical behav-
ior that is observed in such a theory may well be a universal
function ofD and, at the very least, such a theory may pro-
vide some clues as to how a scalar quantum field theory can
go from interacting to noninteracting atD54. In Sec. V we
carry out some preliminary investigations of spherically
symmetric quantum field theory. Specifically, we use the ma-
chinery of spherically symmetric random walks that is devel-
oped in Secs. II–IV to obtain the free two-point Green’s
function of a rotationally symmetric scalar quantum theory.

II. CONNECTION BETWEEN POLYNOMIALS
AND RANDOM WALKS

In this section we propose and discuss the following
quadrature solution to partial difference equations of the type
~1.5!–~1.7!:

Cn,t;m5vn21E
21

1

dx w~x!xtQn21~x!Qm21~x!, ~2.1!

where$Qn(x)%, n50,1,2,..., is a set ofpolynomials orthogo-
nal with respect tow(x) on the interval21<x<1 and$vn%,
n50,1,2,..., is a sequence of positive numbers. This pro-
posed solution can in part be motivated by observing that the
standard orthogonal polynomials@6# also satisfy three-term
recursion relations. Further, differential equations similar to
the difference equations satisfied byCn,t;m are encountered
in queuing theory@12# and solutions to special cases of these
differential equations are found in terms of standard orthogo-
nal polynomials.

The form of ~2.1! incorporates the initial condition~1.7!
in a natural way. We simply choose tonormalizethe set of
polynomials$Qn(x)% so that

E
21

1

dx w~x!Qn~x!Qm~x!5
1

vn
dn,m . ~2.2!
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With this choice of normalization we see that att50 ~1.7!
follows immediately from the above statement of orthogo-
nality:

Cn,0;m5vn21E
21

1

dx w~x!Qn21~x!Qm21~x!5dn,m .

We now demand that the set of polynomials$Qn(x)%
obey the recursion relation

Pin~n11!vnQn~x!5vn21xQn21~x!

2Pout~n21!vn22Qn22~x! ~n>2!

~2.3!

and the initial conditions

Q0~x!51 ~2.4!

and

Q1~x!5
v0

Pin~2!v1
x. ~2.5!

The partial difference equations~1.5!–~1.7! for the probabili-
tiesCn,t;m are automatically satisfied so long as Eqs.~2.3!–
~2.5! hold.

We will now show that

Qn~1!51 ~2.6!

for all n>0. This interesting property is a consequence of
the conservation of probability; namely, the probability of
finding the random walkersomewhereon the lattice at an
arbitrary timet is unity:

(
n51

`

Cn,t;m51. ~2.7!

To establish Eq.~2.7! we merely sum Eqs.~1.5!–~1.7! over
all n>1, using Eqs.~1.3!, ~1.4!, and~1.7!. Assuming that the
sum

f ~x![ (
n50

`

vnQn~x!

exists in the space of distributions, we substitute the expres-
sion forCn,t;m in Eq. ~2.1! into Eq. ~2.7! to obtain

E
21

1

dx w~x!xtQm21~x! f ~x!51. ~2.8!

Next, we compute the functionf (x) directly from the recur-
sion relation~2.3! by summing over alln>2, using Eqs.
~2.4! and ~2.5!. We obtain the following equation forf (x):

~12x! f ~x!50.

The solution to this equation is a generalized function

f ~x!5ad~x21!, ~2.9!

whered(s) is the Dirac delta function anda is a constant.
Substituting Eq.~2.9! into Eq. ~2.8! gives the condition that

Qm21(1) is a constant independent ofm for all m>1. Fi-
nally, from the conditions~2.4! and ~2.5!, we conclude that
this constant is 1,

Qm~1!51, ~2.10!

and we therefore obtain Eq.~2.6!.
The result~2.6! enables us to find a simple formula for the

set of numbers$vn%. We let x51 in the recursion relation
~2.3! to obtain

Pin~n11!vn5vn212Pout~n21!vn22 ~n>2!
~2.11!

and in the initial condition~2.5! to obtain

v15
v0

Pin~2!
. ~2.12!

The unique solution to Eq.~2.11! that satisfies Eq.~2.12! is

vn5v0)
k51

n
Pout~k!

Pin~k11!
~n>1!. ~2.13!

The value ofv0 is determined from the orthogonality condi-
tion ~2.2! at n5m50 and the initial condition~2.4!:

v05
1

*21
1 dx w~x!

.

The result in Eq.~2.13! can be used to eliminate the num-
bersvn from the recursion relation~2.3!, giving a much sim-
pler recursion relation for the polynomialsQn(x):

Pout~n!Qn~x!5xQn21~x!2Pin~n!Qn22~x! ~n>2!.

~2.14!

The initial conditions in Eqs.~2.4! and ~2.5! also become
much simpler:

Q0~x!51, Q1~x!5x.

This recursion relation generates polynomials that exhibit
parity symmetry; that is, even-index polynomials are even
functions and odd-index polynomials are odd functions:
Qn(2x)5(21)nQn(x). From the orthogonality condition
~2.2! one can then deduce that the weight functionw(x) is an
even function ofx. As a consequence, we see from the inte-
gral representation in Eq.~2.1! that ann versust table of
values of the probabilitiesCn,t;m has a checkerboard pattern
with nonzero entries alternating with zero entries in both the
n andt directions. Evidently, a random walker starting from
the sitem at t50 can only reach a siten at timet if n1m1t
is even. This parity condition is a consequence of the original
definition of our random walk in which the walker must
move in or out on every step and may not remain in the same
region.

It is interesting to examine some special cases of the poly-
nomial solution forCn,t;m in Eq. ~2.1!. We consider the case
of equally spaced spherical shellsRn5n and look at some
particular values of the dimensionD with Pout(n) andPin(n)
given in Eqs.~1.1!–~1.3!.
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A. Special caseRn5n, D51

Here

Pout~n!5 1
2 , Pin~n!5 1

2 ~n>2! ~2.15!

and

Pout~1!51, Pin~1!50. ~2.16!

The polynomials$Qn(x)% are the standard Chebyshev poly-
nomials of the first kind@6#:

T 0~x!51, T 1~x!5x, T 2~x!52x221,

T 3~x!54x323x, T 4~x!58x428x211,

and so on. For these polynomials,w(x)51/A12x2,
vn52/p, n>1; andv051/p. The random walk probabilities
in Eq. ~2.1! are given by

Cn,t;m5
2

p E
21

1

dx
1

A12x2
xtT n21~x!T m21~x! ~n>2!,

C1,t;m5
1

p E
21

1

dx
1

A12x2
xtT m21~x!,

which form51 reduces to the particular solution

Cn,n12 j21;15
~n12 j21!!

j ! ~n1 j21!!2n12 j22 ~n>2!,

C1,2t;15
~2t !!

t! t!22t
,

given in Ref.@3#.

B. Special caseRn5n, D52

Here

Pout~n!5
n

2n21
, Pin~n!5

n21

2n21
. ~2.17!

The polynomials$Qn(x)% are the standard Legendre polyno-
mials @6#

P 0~x!51, P 1~x!5x, P 2~x!5 1
2 ~3x221!,

P 3~x!5 1
2 ~5x323x!, P 4~x!5 1

8 ~35x4230x213!,

and so on. For these polynomials,w(x)51 andvn52n11.
Thus the random-walk probabilities in Eq.~2.1! are given by

Cn,t;m5~2n21!E
21

1

dx xtP n21~x!Pm21~x!,

which form51 reduces to the particular solution

Cn,n12 j21;15
~2n21!~n12 j21!!

j ! ~2n12 j21!!!2 j ,

given in Ref.@3#.

C. Special caseRn5n, D50

Here

Pout~n!5
n21

2n21
, Pin~n!5

n

2n21
~n>2!

and

Pout~1!51, Pin~1!50.

The first few polynomials in the set$Qn(x)% are

Q0~x!51, Q1~x!5x, Q2~x!53x222,
~2.18!

Q3~x!5 1
2 ~15x3213x!, Q4~x!5 1

6 ~105x42115x2116!,

and so on. For these polynomials we have chosen
vn53(2n11)/[4n(n11)], n>1, andv05

3
4 . The random

walk probabilities in Eq.~2.1! are then given by

Cn,t;m5
3~2n21!

4n~n21!
E

21

1

dx w~x!xtQn21~x!Qm21~x!

~n>2!,

C1,t;m5
3

4 E
21

1

dx w~x!xtQm21~x!.

The polynomials Eq.~2.18! are closely related to the stan-
dard Gegenbauer~ultraspherical! polynomials $C n

(a)(x)%
with upper indexa53/2 @6#. These particular Gegenbauer
polynomials satisfy the recursion relation

~n11!C n11
~3/2!~x!5~2n13!xC n

~3/2!~x!2~n12!C n21
~3/2!~x!

~n.0!

and the initial conditionsC 0
~3/2!(x)51 andC 1

~3/2!(x)53x.
These Gegenbauer polynomials are orthogonal on the inter-
val 21<x<1 with respect to the weight function
w(x)512x2. The polynomialQn11(x) satisfies the same
recursion relation as these Gegenbauer polynomial
C n

(3/2)(x). However, it is generated from different initial
conditions. We have been able to show that the weight func-
tion w(x) with respect to which the set of polynomials
$Qn(x)% is orthogonal satisfies the integral equation

E
21

1

dt
w~ t !

12xt2
5

2Ax
~12x!@ ln~11Ax!2 ln~12Ax!#

.

We do not know a closed-form solution to this equation.

D. Special caseRn5n, D53

Now,

Pout~n!5
n2

2n222n11
, Pin~n!5

~n21!2

2n222n11
.

For this case we can calculate any finite number of polyno-
mials $Qn(x)%:

54 103SPHERICALLY SYMMETRIC RANDOM WALKS. I. . . .



Q0~x!51, Q1~x!5x, Q2~x!5 1
4 ~5x221!,

Q3~x!5 1
36 ~65x3229x!,

Q4~x!5 1
576~1625x

421130x2181!,

and so on. These polynomialsare orthogonal and they sat-
isfy the normalization constraint~2.10!. However, for this
value ofD ~and for all values ofD other thanD50,1,2!
these polynomials are not related to the standard classical
polynomials that one can find in reference books. We are
unable to determine analytically the weight functionw(x)
with respect to which these polynomials are orthogonal.
Thus the formal expression Eq.~2.1! for the probabilities
Cn,t;m is not very useful. In the next section we devise a
random walk process for which wecandetermine the weight
function and thus find in closed form physically realistic
probabilitiesCn,t;m for all values ofD.0.

III. RANDOM WALKS
FOR ULTRASPHERICAL POLYNOMIALS

In this section we show how to modify the expressions for
Pout(n) andPin(n) in Eqs.~1.1!–~1.3! so that we are able to
obtain analytic closed-form expressions forCn,t;m for all val-
ues ofD.0 for the case of evenly spaced spherical shells
Rn5n. The random-walk process examined in Sec. II D is
too difficult to solve in closed form simply because the for-
mulas for Pout(n) and Pin(n) in Eqs. ~1.1!–~1.3! become
much too complicated whenD takes on values other than 0,
1, or 2.

As we will see, the polynomials generated by the recur-
sion relation~2.14! belong to a set of well-known classical
polynomials if we take the formulas forPout(n) andPin(n)
to be bilinear functions ofn of the general form

Pout~n!5
an1b

cn1d
, ~3.1!

with Pin(n)512Pout(n). Note that bilinear functions con-
tain three arbitrary parameters. We fix these parameters as
follows. First, we demand that the random walk be confined
to the values ofn>1. To impose this condition we require
thatPout~1!51 or, equivalently, thatPin~1!50. This fixes one
parameter. Second, we demand that the large-n asymptotic
behavior ofPout(n) in Eqs.~1.1! and~3.1! agree to ordern.
These two conditions above yield the unique choice

Pout~n!5
n1D22

2n1D23
, Pin~n!5

n21

2n1D23
. ~3.2!

By determining the arbitrary parameters in Eq.~3.1! at the
two boundary pointsn51 and` we obtain a uniformly ac-
curate approximation toPout(n) and Pin(n) in Eqs. ~1.1!–
~1.3! for all n>1. In fact, Eq.~3.2! agrees exactly with Eqs.
~1.1!–~1.3! for D51 @see Eqs.~2.15! and ~2.16!# andD52
@see Eq.~2.17!#. For other values ofD, Eq.~3.2! continues to
be a good approximation, as verified in Fig. 1, where we
comparePin(n) in Eq. ~1.2! with Pin(n) in Eq. ~3.2! for
several values ofD.

The requirement that Eqs.~1.1! and~3.1! agree to ordern
as n→` incorporates the crucial dependence upon the di-

mensionD of space; to wit, asD increases, a random walker
is more likely to move outward than to move inward. As we
will see in Sec. IV, it is this bias that gives rise to Polya’s
theorem; this theorem states that for 0,D<2 a random
walker returns to the starting point with probability 1, while
for D.2 this probability is less than 1.

Substituting the formulas above into Eq.~2.14! gives the
recursion relation

~n1D22!Qn~x!5~2n1D23!xQn21~x!

2~n21!Qn22~x! ~n>2!. ~3.3!

Taking as initial conditions

Q0~x!51, Q1~x!5x,

we can easily use Eq.~3.3! to generate subsequent polyno-
mials

Q2~x!5
1

D
@~D11!x221#,

Q3~x!5
1

D
@~D13!x323x#,

Q4~x!5
1

D212D
@~D218D115!x42~6D118!x213#,

Q5~x!5
1

D212D
@~D2112D135!x5

2~10D150!x3115x#.

These polynomials are just the Gegenbauer~ultraspherical!
polynomials@6# C n

(a)(x) normalized so thatQn(1)51:

FIG. 1. Comparison betweenPin(n) in Eq. ~1.2! and the uni-
form approximation toPin(n) in Eq. ~3.2! for D53 and 5. Note
that the uniform approximation is exact atD51 and 2.
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Qn~x!5
n!G~D21!

G~n1D21!
C n

@~D21!/2#~x!. ~3.4!

Gegenbauer polynomials are hypergeometric functions in the
variable (x21)/2; furthermore, since they are polynomials,
the Taylor series forQn(x) aboutx51 terminates:

Qn~x!5(
j50

n S nj D G~ j1D1n21!G~D/2!

G~D1n21!G~ j1D/2! S x21

2 D j .
~3.5!

From the conventional theory of Gegenbauer polynomials
@6# we immediately know the weight function with respect to
which the polynomialsQn(x) are orthogonal:

w~x!5~12x2!~D22!/2. ~3.6!

Also, the normalization coefficientsvn in Eq. ~2.2! are iden-
tified as

vn5
~2n1D21!G~n1D21!G@~D11!/2#

Apn!G~D/2!G~D !
. ~3.7!

Finally, we note that the polynomialsQn(x) satisfy the
Sturm-Liouville eigenvalue differential equation

F ~12x2!
d2

dx2
2Dx

d

dx
1n~n1D21!GQn~x!50

and the first-order difference-differential equation

F ~12x2!
d

dx
1nxGQn~x!5nQn21 . ~3.8!

Now that we have identified explicitly the polynomials
Qn(x), the weight functionw(x), and the normalization co-
efficientsvn , we can use the formula in Eq.~2.1! to calculate
the moments ofCn,t;m and obtain a physical description of
our random walk.

IV. QUANTITATIVE DESCRIPTION
OF THE RANDOM WALK

In this section we discuss the properties of the hyper-
spherical random walk introduced in Sec. III. We calculate
the probability of eventually returning to the starting point of
a random walk, the expected time of return, and various
other moments of the random walk probabilities. As will be
evident, the key advantage of this random walk is that all of
these quantities can be calculatedin closed form.

A. Probability of eventual return

In a physical description of a random walk the simplest
and most natural question to ask is, What is the probability
of eventually returning to the starting point? The probability
that a random walker will eventually return to regionm,
given that the walker started in regionm, is denotedPm(D).
To calculatePm(D) we use generating function methods
previously described@see Eq.~2.11! of Ref. @3##; to wit,

Pm~D !512
1

( t50
` Cm,2t;m

. ~4.1!

Our problem is now to evaluate the sum, which we denote
by Sm , in Eq. ~4.1!. Using Eq.~2.1! with Qn(x) given in Eq.
~3.4! we have

Sm5(
t50

`

Cm,2t;m

5(
t50

`

vm21E
21

1

dx~12x2!~D22!/2x2t@Qm21~x!#2.

~4.2!

Note that this sum is divergent unlessD.2. To verify
this assertion we observe that the large-t asymptotic behavior
of the integral in Eq.~4.2! is

E
21

1

dx~12x2!~D22!/2x2t@Qm21~x!#2;G~D/2!t2D/2

~ t→`!.

Thus

Pm~D !51 ~0,D<2!. ~4.3!

When D.2 the sumSm converges, and we begin the
evaluation by interchanging the order of summation and in-
tegration:

Sm5vm21E
21

1

dx~12x2!~D24!/2@Qm21~x!#2.

We evaluate this integral exactly using the recursion relation
~3.3! and the difference-differential equation~3.8!. The result
is

Sm5
2m1D23

D22
. ~4.4!

Substituting into Eq.~4.1! gives

Pm~D !5
2m21

2m1D23
~D.2!. ~4.5!

This result is exact for allm andD @13#. The probability in
Eqs.~4.3! and ~4.5! confirms that Polya’s theorem holds for
this model of a random walk, regardless of the region in
which the walk begins.

For a hypercubic lattice the probability of eventually re-
turning to the starting point of a random walk is given in
terms of an integral@see Eq.~2.12! of Ref. @3##

P~D !512
1

*0
`dt e2t@ I 0~ t/D !#D

,

whereI 0(x) is the modified Bessel function. Unlike the ran-
dom walk discussed in this paper, whenD.2,P(D) cannot
be given in closed form~except for the special caseD53!.
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However, the asymptotic expansion ofP(D) for largeD is
known @see Eq.~2.15! of Ref. @3##:

P~D !;
1

2D
1

1

2D2 1••• ~D→`!.

Note that for largeD, the probability of returning to the
starting point of a random walk falls off algebraically like
1/D in both models. In contrast, for the hyperspherical ran-
dom walk discussed in Ref.@3#, the probability function
P1(D)5121/z(D21) falls off exponentiallylike 212D for
largeD. As functions ofD, the hypercubicP(D) and the
hypersphericalPm(D) discussed here both exhibit cusps at
D52.

Observe that for largem, Pm(D) approaches 1. This hap-
pens because the available entropy for the random walk be-
comes constant; at large radius a sphere looks locally like a
plane. Indeed, asn→`, the recursion relation~3.3! ap-
proaches that of a one-dimensional random walk for which
Pout(n)5Pin(n)5

1
2 .

B. Expected time of return

As explained in Ref.@4#, the expected time of return
Tm(D) of a random walker who begins the walk in regionm
is obtained from the first moment ofCm,t;m :

Tm~D !5
( t50

` 2tCm,2t;m

Pm~D !~( t50
` Cm,2t;m!2

. ~4.6!

Again, using formulas~3.3! and ~3.8! we can calculate the
sums in Eq.~4.6! straightforwardly. We find that

Tm~D !5H ` ~0,D<4!

2~D22!@~2m21!D12~m21!~m22!#

~2m21!D~D24!

.

~D.4!

Note that asD increases,Tm(D) approaches 2, indepen-
dent of the starting pointm. This is because for very large
dimensionD, if a random walker does not return to the start-
ing point on the second step, the random walker willnever
return; asD→` the entropy for moving outward dominates
the walk. However, for fixedD asm increasesTm(D) di-
verges. This is because for largem theD-dimensional walk
approaches a one-dimensional walk for which the expected
time of return is infinite.

C. Higher temporal moments

In general, all temporal moments can be calculated in
closed form. Thepth temporal moment( t50

` tpCm,2t;m is a
rational function ofD andm whose complexity increases
with p. The sum defining thepth temporal moment con-
verges whenD.2p12 and diverges whenD<2p12. We
list the first four temporal moments below@note that the
zeroth momentSm is already given in Eq.~4.4!#

(
t50

`

Cm,2t;m5Sm5
~2m1D23!M0

D22
,

(
t50

`

tCm,2t;m5
~2m1D23!M1

~D24!~D22!D
,

(
t50

`

t2Cm,2t;m5
~2m1D23!M2

~D26!~D24!~D22!D~D12!
,

(
t50

`

t3Cm,2t;m

5
~2m1D23!M3

~D28!~D26!~D24!~D22!D~D12!~D14!
,

where

M051,

M15~2m21!D12~m21!~m22!,

M25~2m21!D312~7m2213m17!D214~m21!~6m2

217m116!D112~m21!~m22!~m223m14!,

M35~2m21!D512~19m2229m115!D412~96m3

2296m21386m2173!D314~99m42486m3

11093m221184m1477!D214~90m52621m4

12040m323683m213414m21252!D124~m21!

3~m22!~5m4230m3197m22156m1104!.

D. Spatial moments

Thekth spatial moment of a random walk is defined as a
weighted average over the probabilitiesCn,t;m :

^Rk& t[ (
n51

`

nkCn,t;m . ~4.7!

Note that in general̂Rk& t depends on the starting pointm of
the random walk. We have suppressed the argumentm be-
cause, as we will see, the leading asymptotic behavior of
^Rk& t as t→` and the first correction to this behavior are
independent ofm. ~The second correction does depend on
m.!

We have found an exact expression for^Rk& t for all val-
ues oft for the special casem51:

^Rk&2t5~2t11!k1(
r51

t

(
s5r11

t11

~21!r1s

3 f ~2r21,2s21,2t,k! ~4.8!

and

^Rk&2t115~2t12!k1(
r51

t

(
s5r11

t11

~21!r1sf ~2r ,2s,2t11,k!,

~4.9!

where
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f ~x,y,t,k!5
~x2y!G~x1y21!G~ t11!~xk2yk!

2tG~x!G~y!GS x1y

2 DGS t2x13

2 DGS t2y13

2 D ~D1x1y23!

. ~4.10!

This formula has the virtue that theD dependence is very
simple; the parameterD occurs just once in the denominator
of f in Eq. ~4.10!. Furthermore, for the special case of the
zeroth moment, settingk50 in Eq. ~4.8! or ~4.9! immedi-
ately gives the result̂R0& t51, which states that probability
is conserved. Fork.1 this formula is inherently compli-
cated. It is not easy to determine the asymptotic behavior of
^Rk& t for larget from Eqs.~4.8! or ~4.9! because terms in the
double sum oscillate in sign.

To find the asymptotic behavior of^Rk& t as t→` we use
generating-function techniques. We rewrite Eq.~4.7! as a
derivative operator appliedk times to a power series:

^Rk& t5 lim
z→1

S z d

dzD
k

(
n51

`

znCn,t;m . ~4.11!

Next, we substitute into Eq.~4.11! the integral representation
for the probabilityCn,t;m in Eq. ~2.1! and use Eq.~3.6!. We
obtain

^Rk& t5 lim
z→1

E
21

1

dx~12x2!~D22!/2xtQm21~x!

3S z d

dzD kFz(n50

`

znvnQn~x!G . ~4.12!

It is convenient to use the expression forvn in Eq. ~3.7! and
the recursion relation~3.3! for Qn(x) to evaluate the sum in
Eq. ~4.12!:

(
n50

`

znvnQn~x!5

GSD11

2 D
GS 12DGSD2 D ~12z2!

3~122xz1z2!2~D11!/2.

We are interested in the behavior of the resulting integral
as t→`. By Laplace’s method this integral is dominated by
values ofx near 1 in this limit. Thus, for fixedm Eq. ~2.10!
implies that we may replaceQm21(x) by 1 to leading order;
we thus conclude that the leading asymptotic behavior of
^Rk& t is independent ofm. To obtain higher-order terms in
the asymptotic expansion we replaceQm21(x) by the expan-
sion in Eq. ~3.5!. A straightforward asymptotic analysis of
the resulting integral gives the first few terms in the asymp-
totic expansion of̂Rk& t for large t with m fixed:

^Rk& t;

GSD1k

2 D
GSD2 D ~2t !k/2H 12

k~D23!GSD1k21

2 D
2GSD1k

2 D
3~2t !21/21kF ~m21!~m1D22!

D

1
3D2k218Dk112D22k2133k228

12~D1k22! G~2t !21

1O~ t23/2!J ~ t→`!. ~4.13!

Observe that the leading term in this asymptotic expansion is
precisely the same as the result in Eq.~3.4! of Ref. @4# for the
case of spherically symmetric random walks described by
the probabilities in Eqs.~1.1!–~1.3! with Rn5n. The result
in Eq. ~4.13! is obtained directly and with considerably less
effort than that in Ref.@4#, where only the leading asymp-
totic behavior was obtained. Note that the first two terms in
Eq. ~4.13! are independent of the starting pointm. To verify
the accuracy of this asymptotic expansion we compare the
first three partial sums of this series with the exact values of
the moments obtained numerically att51000; this compari-
son is given in Tables I and II. In Table I we consider thekth
moment for various values ofk andD with m51. In Table
II we consider the first and second moments for various val-
ues of the starting pointm with D52.

From the asymptotic behavior in Eq.~4.13! with k52 we
can determine the Hausdorff dimensionDH of the random
walk @4#. We find that

DH52

for all values ofD. This result agrees with that obtained in
@5# for a D-dimensional hyper-cubic lattice.

V. APPLICATION TO QUANTUM FIELD THEORY

One of our long-range goals in our study of
D-dimensional random walks is a deeper understanding of
D-dimensional quantum field theory. In particular, we are
interested in how critical phenomena in such theories depend
on the dimension of space-time. We are especially interested
in how af4 scalar field theory becomes free asD→4. We
have already conducted several investigations of
D-dimensional quantum-mechanical and field-theoretic sys-
tems@14–17#. In this section, as an elementary illustration of
how to apply our work onD-dimensional random walks to
quantum field theory, we use the random walk probabilities
Cn,t;m in Eq. ~2.1! with the polynomialsQn(x) given in Eq.
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~3.4! to calculate the Euclidean two-point Green’s function
of a D-dimensional free scalar quantum field theory having
spherical symmetry. We will then verify our calculation by
taking the spherical average of the two-point Green’s func-
tion of a conventional translationally invariant~nonspheri-
cally symmetric! Euclidean field theory@18#.

A. Derivation of spherically symmetric propagator
from random-walk probabilities Cn,t;m

For this calculation we follow the standard recipe dis-
cussed in Ref.@5#. Specifically, we begin with the generating
functionG(n,m,l) for the temporal moments of the prob-
abilitiesCn,t;m :

G~n,m,l!5(
t50

`

l tCn,t;m .

Our objective is to find the continuum limit of this expres-
sion.

For definiteness we choosen, m, and t to be even:
n52N,m52M , andt52T. Also, without loss of generality,
we takeN>M . Substituting the formula forCm,t;m in Eq.
~2.1! with Qn(x) given by ultraspherical polynomials in Eq.
~3.4!, andw(x) in Eq. ~3.6! andvn in Eq. ~3.7!, we obtain

G~2N,2M ,l!5

4NG2SD21

2 D
pMD22 E

0

1

dx~12x2!~D22!/2

3 (
T5N2M

`

~xl!2TC 2N21
@~D21!/2#

3~x!C 2M21
@~D21!/2#~x!. ~5.1!

TABLE II. Actual and predicted values of( n51
` nkCn,t;m for t51000 andD52.

k m Actual Leading behavior With first correction With second correction

1 1 4.013 8103101 3.963 3273101 4.013 3273101 4.013 8233101

3 4.019 7523101 3.963 3273101 4.013 3273101 4.019 7683101

5 4.033 5973101 3.963 3273101 4.013 3273101 4.033 6393101

7 4.055 3063101 3.963 3273101 4.013 3273101 4.055 4383101

9 4.084 8143101 3.963 3273101 4.013 3273101 4.085 1633101

2 1 2.040 1383103 2.000 0003103 2.039 6333103 2.040 1333103

3 2.046 1983103 2.000 0003103 2.039 6333103 2.046 1333103

5 2.060 3363103 2.000 0003103 2.039 6333103 2.060 1333103

7 2.082 5533103 2.000 0003103 2.039 6333103 2.082 1333103

9 2.112 8483103 2.000 0003103 2.039 6333103 2.112 1333103

TABLE I. Actual and predicted values of( n51
` nkCn,t;m for t51000 andm51.

k D Actual Leading behavior With first correction With second correction

1 1 2.622 5023101 2.523 1333101 2.623 1333101 2.623 1333101

2 4.013 8103101 3.963 3273101 4.013 3273101 4.013 8233101

3 5.047 5263101 5.046 2653101 5.046 2653101 5.047 5273101

4 5.987 2203101 5.944 9913101 5.894 9913101 5.897 2203101

5 6.631 7173101 6.728 3533101 6.628 3533101 6.631 7183101

2 1 1.051 4503103 1.000 0003103 1.050 4633103 1.051 4633103

2 2.040 1383103 2.000 0003103 2.039 6333103 2.040 1333103

3 3.001 0003103 3.000 0003103 3.000 0003103 3.001 0003103

4 3.943 0283103 4.000 0003103 3.940 5503103 3.943 0503103

5 4.870 3663103 5.000 0003103 4.865 4333103 4.870 4333103

3 1 5.352 6713104 5.046 2653104 5.346 2653104 5.352 5733104

2 1.219 2513105 1.188 9983105 1.218 9983105 1.219 2463105

3 2.019 0113105 2.018 5063105 2.018 5063105 2.019 0113105

4 2.914 6163105 2.972 4953105 2.912 4953105 2.914 6513105

5 3.892 6033105 4.037 0123105 3.887 0123105 3.892 7313105

4 1 3.205 9023106 3.000 0003106 3.201 8513106 3.205 8513106

2 8.237 8103106 8.000 0003106 8.237 8003106 8.237 8003106

3 1.500 0003107 1.500 0003107 1.500 0003107 1.500 0003107

4 2.342 1143107 2.400 0003107 2.340 5503107 2.342 1503107

5 3.344 3493107 3.500 0003107 3.338 5203107 3.344 5203107
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Next, we perform the sum in Eq.~5.1!:

G~2N,2M ,l!5

4NG2SD21

2 D
pMD22 E

0

1

dx~12x2!~D22!/2

3
~xl!2N22M

12x2l2 C 2N21
@~D21!/2#

3~x!C 2M21
@~D21!/2#~x!. ~5.2!

To prepare for taking the continuum limit we make use of
the equivalence of Gegenbauer and Jacobi polynomials@6#:

C 2N21
@~D21!/2#~x!5

G~D/2!G~2N221D !

G~D21!G~2N211D/2!

3P 2N21
@~D22!/2,~D22!/2#~x!. ~5.3!

Substituting Eq.~5.3! into Eq. ~5.2! and takingN andM
large gives

G~2N,2M ,l!5242DND/2M12D/2E
0

1

dx~12x2!~D22!/2

3
~xl!2N22M

12x2l2 P 2N21
@~D22!/2,~D22!/2#

3~x!P 2M21
@~D22!/2,~D22!/2#~x!. ~5.4!

WhenN andM are large the integral in Eq.~5.4! is domi-
nated by values ofx near 1. Thus we make the change of
variablex512e2s2/2, wheree is a small parameter:

G~2N,2M ,l!54e2ND/2M12D/2

3E
0

A2/e
ds

s@l~12e2s2/2!#2N22M

12l2~12e2s2/2!2

3S es

2 D ~D22!/2

P 2N21
@~D22!/2,~D22!/2#S 12

e2s2

2 D
3S es

2 D ~D22!/2

P 2M21
@~D22!/2,~D22!/2#S 12

e2s2

2 D .
~5.5!

We now make use of the following asymptotic limit for
Jacobi polynomials@6#:

lim
h→0

S hs

2 D a

P 1/h
~a,a!S 12

h2s2

2 D5Ja~s!,

where Ja(s) is a Bessel function. BecauseN and M are
large, we can use this asymptotic limit twice in Eq.~5.5!:

G~2N,2M ,l!54e2ND/2M12D/2

3E
0

A2/e
ds

s@l~12e2s2/2!#2N22M

12l2~12e2s2/2!2

3J~D22!/2„e~2N21!s…J~D22!/2

3„e~2M21!s…. ~5.6!

We introduce the continuum variablesr and r 8 by

mr5e~2N21!, mr 85e~2M21!,

wherem is a mass parameter. Note thatr.r 8. Also, since
e!1, we may replace the upper limit of integration in Eq.
~5.6! by ` and simplify the integrand:

G~2N,2M ,l!52er D/2~r 8!12D/2m

3E
0

`

ds
s

12l2~12e2s2!
J~D22!/2~mrs!

3J~D22!/2~mr 8s!.

Finally, we make use of the Bessel function integral iden-
tity @19#

E
0

`

ds
s

s21c2
Jn~as!Jn~bs!5I n~bc!Kn~ac! ~a.b!,

where I n and Kn are modified Bessel functions. Taking,
l2e2512l2, we have

G~2N,2M ,l!5
2m

e
r D/2~r 8!12D/2I ~D22!/2~mr 8!

3K ~D22!/2~mr !. ~5.7!

Apart from a multiplicative normalization constant, the
expression in Eq.~5.7! is the final result for the Euclidean
propagator. LetG (r→r 8) represent the spherically averaged
amplitude for a free scalar particle of massm to propagate
from some point on a sphere of radiusr to some point on a
sphere of radiusr 8. Note that this probability amplitude is
not symmetric under the interchange ofr andr 8; whenD.1
it is more likely for a particle to propagate from a sphere of
smaller radius to a sphere of larger radius than for the reverse
to occur. This is because the final state of the particle propa-
gating to the larger sphere has a higher entropy. This asym-
metry does not occur in translationally invariant theories.
Our final, properly normalized, result for the propagator is
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G ~r→r 8!5~r 8!D21~rr 8!12D/2I ~D22!/2~mr,!

3K ~D22!/2~mr.!, ~5.8!

where

r.5max$r ,r 8%, r,5min$r ,r 8%.

The normalization of the Green’s function in Eq.~5.8! will
be verified in Sec. V B.

The propagation asymmetry in Eq.~5.8! is a continuum
manifestation of the directional bias that is present in spheri-
cally symmetric random walks. Note thatCn,t;m , the prob-
ability of walking fromm to n @see Eq.~2.1!#, is not a sym-
metric function ofm andn. Rather, it is the functionvn21 in
Eq. ~3.7! multiplying a symmetric function ofm andn. The
function vn21 represents the random-walk entropy associ-
ated with the volume of hyperspherical regionn. The asym-
metry in Eq.~5.8! is a direct consequence of the asymmetry
in Cn,t;m .

B. Normalization of the two-point Green’s function

The free propagator in momentum space for a
D-dimensional translationally symmetric scalar field theory
is

G̃ ~k!5
1

k21m2 .

To obtain the coordinate-space propagatorG ~r2r 8! we take
the D-dimensional Fourier transform of the momentum-
space propagator:

G ~r2r 8!5
1

~2p!D
E dDk

k21m2 e
2 ik•~r2r8!

5
1

~2p!D/2
~m/ur2r 8u!~D22!/2

3K ~D22!/2~mur2r 8u!. ~5.9!

The coordinate-space propagator satisfies the Green’s-
function differential equation

~¹22m2!G ~r2r 8!5d~D !~r2r 8!.

Let us calculate the amplitude for a particle atr to propa-
gate anywhere. We obtain this amplitude by integrating
G ~r2r 8! with respect tor 8 over all space:

E dDr 8G ~r2r 8!5
1

m2 . ~5.10!

We can now verify thatG (r→r 8) in Eq. ~5.8! is properly
normalized by calculating the amplitude for a particle at ra-
dius r to propagate toany radius:

E
0

`

dr8G ~r→r 8!5r 12D/2K ~D22!/2~mr !

3E
0

r

dr8~r 8!D/2I ~D22!/2~mr 8!

1r 12D/2I ~D22!/2~mr !E
r

`

dr8~r 8!D/2

3K ~D22!/2~mr 8!

5
r

m2 @ I D/2~r !K ~D22!/2~r !

1I ~D22!/2~r !KD/2~r !#5
1

m2 ,

where we have the used the Wronskian identity for modified
Bessel functions. This result agrees with that in Eq.~5.10!.

C. Continuum derivation of spherically symmetric propagator

In this subsection we derive the spherically symmetric
propagator in Eq.~5.8! from the translationally symmetric
propagator in Eq.~5.9! by taking an angular average. To
obtain the angular average we let

ur2r 8u5Ar 21~r 8!222rr 8 cosu.

We then expand the modified Bessel function in Eq.~5.9! as
a series in terms of Gegenbauer polynomials

Kn~mur2r 8u!
ur2r 8un

5G~n!S 12 m2rr 8D 2n

(
n50

`

~n1n!C n
~n!

3~cosu!I n1n~mr !Kn1n~mr 8!

~r,r 8!.

If we then integrate over the angleu, only then50 term in
the series survives and we obtain the result in Eq.~5.8!. The
fact that we obtain the same two-point Green’s function di-
rectly from our random-walk model supports the validity of
the uniform approximation for the probabilitiesPout(n) and
Pin(n) in Eq. ~3.2!.
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